Li--Yorke chaos for invertible mappings on noncompact spaces
نویسندگان
چکیده
منابع مشابه
On the Invariance of Li-Yorke Chaos of Interval Maps
In their celebrated ”Period three implies chaos” paper, Li and Yorke proved that if a continuous interval map f has a period 3 point then there is an uncountable scrambled set S on which f has very complicated dynamics. One question arises naturally: Can this set S be chosen invariant under f? The answer is positive for turbulent maps and negative otherwise. In this note, we shall use symbolic ...
متن کاملAttraction of Li-Yorke chaos by retarded SICNNs
In the present study, dynamics of retarded shunting inhibitory cellular neural networks (SICNNs) is investigated with Li–Yorke chaotic external inputs and outputs. Within the scope of our results, we prove the presence of generalized synchronization in coupled retarded SICNNs, and confirm it by means of the auxiliary system approach. We have obtained more than just synchronization, as it is pro...
متن کاملOn intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings
In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...
متن کاملThe Topological Degree for Noncompact Nonlinear Mappings in Banach Spaces
Let X and Y be Banach spaces, G an open subset of X. If we denote the closure of G by cl(G), let ƒ be a mapping of cl(G) into Y. For X~ Y and ƒ a compact mapping, Leray and Schauder [9] gave a definition of topological degree for mappings of the form ƒ —ƒ on the open set G over a point a of X whenever (I—f)"^) is a compact subset of G. The Leray-Schauder degree for compact displacements is the ...
متن کاملLI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS
In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$ for finite discrete $X$ with at least two elements, infinite countable set $Gamma$ and arbitrary map $varphi:GammatoGamma$, the following statements are equivalent: - the dynamical system $(X^Gamma,sigma_varphi)$ is Li-Yorke chaotic; - the dynamical system $(X^Gamma,sigma_varphi)$ has an scr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF MATHEMATICS
سال: 2016
ISSN: 1300-0098,1303-6149
DOI: 10.3906/mat-1504-11